
SANDIA REPORT
SAND2006-xxxx
Unclassified Unlimited Release
Printed March 2006

The Tool Set for Building Claro - A
Component Loading Architecture

Karl G. Merkley, Elemental Technologies, Inc.

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

SAND2006-xxxx
Unclassified Unlimited Release

Printed March 2006

The Tool Set for Building Claro - A
Component Loading Architecture

Karl G. Merkley
Elemental Technologies, Inc.

17 Merchant Street
American Fork, UT 84003

karl@elemtech.com

Abstract

Claro, A Component Loading Architecture, was designed with two pur-
poses. The first was to provide a graphical user interface for an existing com-
mand line tool, Cubit. Second, it was designed to provide a versatile user
interface for other tools in the design through analysis (D2A) tool set. While
many tools may not fit into the Claro architecture, the tools that were used to
build Claro are valid in very broad range of applications. This report discusses
the tools (specifically, Qt, VTK, and python) used to build Claro and shows how
their utility and versatilty make them applicable to the larger set of D2A tools.
As multiple projects use the same set of tools it makes it more probable that
different groups can leverage the work of previous developers.

3

This page intentionally left blank.

4

Contents

Introduction . 7
Multi-Platform GUI . 7
Visualization . 10
Scripting . 11
Conclusion. 14

Figures

1 Cubit usage data after the release of the multi-platform GUI. 8
2 Student project developed with the Qt multi-platform user interface

library. 9
3 Sample VTK code for creating and rendering a cylinder. 10
4 Example of automatic boundary condition definition for a gas

chomatograph analysis. 12
5 A portion of the code for finding opposite faces in a hexahedral prism . 13

5

This page intentionally left blank.

6

The Tool Set for Building Claro -
A Component Loading

Architecture

Introduction

Cubit is a finite-element mesh generation tool developed by Sandia National Lab-
oratories [6] that has served as a research platform for important mesh generation
algorithms [13][15][17] and for production meshing. Cubit was originally devel-
oped as a command-line driven program; however, in 2003 it was determined that
to increase the utility and usability of Cubit it should be augmented by a modern
graphical user interface (GUI). The requirements for this project extended beyond
just providing a GUI for Cubit, they also set forth guidelines for interaction between
other design-to-analysis (D2A) applications. The goal was to create a framework
for multiple D2A applications. Cubit was designed to be one component that could
work within this framework which was designated as Claro. However, Claro is more
than just the software package. As the acronym suggests, it is an architecture and
a set of tools that extends past the particular software implementation. This paper
will focus on three of the major requirements that drove the Claro development
process, 1) multi-platform GUI, 2) visualization, and 3) scripting, and discuss the
tools that were selected to meet the requirements. While other D2A projects may
not chose to use the specific Claro implementation, we believe that the set of tools
that have been selected have wide applicability. By selecting a common set of
tools, it is anticipated that projects can leverage work within the broad range of
D2A applications.

Multi-Platform GUI

Cubit originated over a decade ago and there were strong requirements that it run
on multiple operating systems and hardware platforms. At that time there was not
a good solution for a graphical user-interface (GUI) that would provide a single
code base on multiple operating systems. Caterpillar Inc. developed a Microsoft
Windows implementation of a GUI for Cubit and this version was made available
to Cubit users within Sandia; however, the Caterpillar GUI for Cubit never gained
widespread acceptance. One reason for this lack of acceptance was the lack of
support for multiple operating systems and hardware platforms. There are times
when a finite element problem requires more resources than are available on a
desktop system. Users already face enough challenges when moving to a different

7

operating system. They do not want the user interfaces of their software packages
to change also.

Within the Claro framework we have resolved this issue by using Qt from Trolltech
AS [1]. Qt provides a multi-platform user interface solution that allows for a single
code base across all platforms. It uses native GUI widgets (buttons, menus, etc.)
so the application looks like a native application to the user. It provides good tools
for graphically creating the user interface and excellent tools for laying out the user
interface so that that sizing is maintained across platforms. Qt also implements
a unique method for tying GUI events to functions called the signal-slot interface.
The signal-slot interface provides a very intuitive and flexible method for connecting
the events to functions. It does not have the disadvantages of the Motif callback
method which requires a fixed parameter interface and difficulty in passing custom
data and it avoids the problems of ever increasing entries in a switch statement in
the GUI event loop.

Figure 1. Cubit usage data after the release of the multi-
platform GUI.

Figure 1 shows the effects the cross platform GUI has had on Cubit usage. The
figure shows the number of unique users that accessed Cubit at least twice in the
given month. If a user started up Cubit just to look at the GUI and then never
used it again, that user is not counted in the statistics. The first release of the
cross-platform GUI was Cubit 9.0 in September of 2004. This release supported
Windows, Linux, and Sun. There is an immediate jump in usage at that point. The
next release was Cubit 10.0 in May 2005 although beta users had access to it
earlier. This release added HP-UX and SGI IRIX to the supported platforms. Once
again, there is a corresponding jump in usage.

We have been very successful with several Qt based projects [8]. We have found

8

Figure 2. Student project developed with the Qt multi-
platform user interface library.

the API easy to use and the implementation to be very solid. Anecdotally, I have
found that students in my course at Brigham Young University, Computer-Aided
Engineering Software Development, have been much more successful in com-
pleting difficult projects since switching the class to Qt. It appears that the GUI
programming does not create an obstacle to accomplishing the final project. In
fact, it appears that the well organized Qt API assists students in designing better
code.

Figure 2 shows a sample student project completed with Qt. It represents a mech-
anism analysis of a helicopter rotor. The project was completed by a mechanical
engineering student with a strong kinematics background but no computer science
or programming background prior to completing the course. The project repre-
sents the final for the class and was completed in less than four weeks. This is one
example of the utility and usability of the Qt interface.

Qt has a dual license. It is released both as GPL and as a commercial license. The
GPL license is intended for individuals who are working on developing open source
code without remuneration. The commercial license is for groups or individuals that
are being paid to develop code that may be sold commercially. We have chosen
to license Qt commercially to avoid any potential licensing concerns. We also
believe that it is wise to support an entity that provides commercial quality code
and support so that the code base will continue to improve.

9

Visualization

Almost all steps of the D2A process are enhanced by graphical representations of
simulation models. Whether the visualization involves constructing a CAD model,
meshing, material properties plots, or post-processing, each phase is augmented
by some type of visual tool. Computer graphics and scientific visualization are
inherent to the Claro architecture.

To support the visualization requirements of Claro we chose to use the Visualiza-
tion Toolkit (VTK) by Kitware [11]. VTK is a high level graphical library that allows
users to piece together a visualization pipeline that includes data sources, filters
(or data modifiers), and rendering tools. Complex graphical images can be created
with relatively few lines of code. It is important to differentiate between the graphics
pipeline and the visualization pipeline. The graphics pipeline in modern systems
is typically implemented in the Graphics Processing Unit (GPU) on the video card.
It handles the transformation matrices necessary to convert a 3D point in world
coordinate space to a pixel on the screen. The visualization pipeline in VTK is at
a much higher level than the graphics pipeline. It manipulates large pieces of data
and provides data filters to modify and display the data.

For example, figure 3 shows the entire graphics pipeline for creating and displaying
a cylinder in VTK.

void draw_cylinder()

{

source = vtkCylinderSource::New(); // Geometry

mapper = vtkPolyDataMapper::New(); // Mapper

mapper->SetInputConnection(source->GetOutputPort());

actor = vtkActor::New(); // Actor in scene

actor->SetMapper(mapper);

vtkRenderer* ren = vtkRenderer::New(); // Renderer

ren->AddActor(actor); // Add Actor to renderer

ren->ResetCamera(); // Reset camera

ren->GetRenderWindow()->Render();

}

Figure 3. Sample VTK code for creating and rendering a
cylinder.

10

First a geometry source is defined. In this case the source is a cylinder primitive.
The geometry could come from a number of other different sources such as data
read from a file in a number of different formats or created as low level entities,
points, lines, etc. Next vtkPolyDataMapper is created which converts polygonal
data to graphics primitives. The primitives are added to a vtkActor which is an
object that is rendered in the final scene. Finally, we add the actor to the rendering
scene, reset the camera, and render the image. VTK provides a concise, clear
method of producing complex graphical scenes. It removes much of the tedium of
managing the entire OpenGL pipeline.

One piece that was missing from the VTK library was support to link Qt and VTK.
This support has been developed in the form of the QVKTWidget with funding from
the Cubit project as part of the Claro implementation. The QVTKWidget has been
placed as open source code into the VTK repository and is freely available. The
QVTKWidget provides support for adding graphical widgets interactively via the Qt
Designer as well as being added via code. The QVTKWidget was designed to
compartmentalize Qt and VTK and allow each library to handle those tasks that
they were designed to handle. The QVTKWidget is being used in a number of
projects at Sandia [10] and around the world [7][9].

VTK is open source with a BSD license. It can be freely used anywhere. There
is excellent documentation on the web [5] and an active mailing list that provides
support for VTK.

Scripting

Another requirement that drove the Claro architecture was the ability to create a
scriptable interface. Cubit already contains the Algebraic Pre-Processor (APRE-
PRO) [12] and it has proven to be very useful in creating parametric models. How-
ever, the success of APREPRO has led to many enhancement requests for fea-
tures like looping and tests that make it verge on being a true scripting language.
We determined that it would be useful to use a widely accepted scripting language
rather than to continue to invent and maintain our own language.

There were a number of requirements that were placed on the choice of a script-
ing language. It had to be widely accepted. It had to provide a complete set of
programming features. It had to be embeddable in a C++ executable. It had to
interface with Qt so that users could customize the interface as well as create pa-
rameterized models.

After doing extensive research we chose to use the Python [16] scripting language
as the basis for scripting in Claro. Python is widely used within the scientific and

11

engineering communities. Commercial codes such as Abaqus [4] have adopted
Python as the scripting language of choice. Lawrence Livermore National Labora-
tories has had a great deal of experience with Python in scientific computing [14]
and found it be a very useful tool. We chose to follow a path that was well de-
fined.

One issue that was required was a method for exposing methods in a C++ library
to the scripting language. We chose a tool called the Simplified Wrapper and In-
terface Generator, SWIG, to provide an interface [2][3]. We create a very simple
interface file that includes the interface header file that is to be wrapped. We pur-
posely defined the interface to be very simple. It contains strings, ints, doubles,
and vectors or arrays of those quantities. SWIG will generate this interface auto-
matically without any additional coding.

Figure 4. Example of automatic boundary condition defini-
tion for a gas chomatograph analysis.

We have found the scripting interface to very useful. It provides a method of de-
livering code to specific users needing functionality without having to wait for an
entire release cycle. It also provides a method of delivering code to users that is
of interest only to that user and is not of benefit to the general user base. Cubit
has been continually developed for over a decade. In that period of time, a number
of users have made requests for functionality to support specific research topics.
Once the functionality has been added to the code base, it is very difficult to re-
move. As a result this code must be maintained over the lifetime of the code at
significant expense. By delivering user specific functionality as a script, we remove
this code from the Cubit code base and place any maintenance burden on the user.
The user can then determine when the need for the functionality has elapsed. If the
functionality proves to be of use to the general user base, it is possible to migrate

12

the algorithm from the scripting language to the core C++ code base.

Figure 4 demonstrates an example of the scripting capabilities. The structure rep-
resents a model of a gas chromatograph. The geometry is very simple. It is no
more than a rectangular prism. However, the boundary conditions require marking
the opposite faces of each chord of hexahedral elements in the model. Picking the
opposite faces by hand is a very tedious process and the user requested help in
automating the process. The colored faces in 4 show the boundary sets. Faces on
opposite sides of the prism have the same color indicating that faces form a pair.
For this example, the number of elements and the length of the tube have been
decreased significantly. This is very specific functionality that saves the user hours
of work for each analysis but it is not of use to the general user base.

The core of the script that performs this operation is shown in figure 5.

for surface_id in surface_list:

get all the quads on the surface

surface_quads = cubit.get_surface_quads(surface_id)

for quad in surface_quads:

get a chord of hexes starting from the given quad

start_quad_nodes = cubit.get_connectivity("Quad", quad)

hex_chord = get_hex_chord(start_quad_nodes)

find the last hex and quad nodes the chord

last_hex, opp_quad_nodes = \

find_opposing_face_nodes(hex_chord, start_quad_nodes)

get all the dimension 2 (quad) elements off the hex

quad_list = cubit.get_sub_elements("hex", last_hex, 2)

find the quad associated with nodes on the end of the chord

opposite_quad = find_face(quad_list, opp_quad_nodes)

command = "sideset " + str(start_sideset_id) + " face " + \

str(quad) + " " + str(opposite_quad)

cubit.cmd(command) # execute the command in cubit

start_sideset_id += 1

Figure 5. A portion of the code for finding opposite faces in
a hexahedral prism .

Since Cubit was originally developed as a command driven system and the origi-
nal command language must be maintained to provide backwards compatibility, it
was decided to retain that command language structure for modifying the model

13

state. Currently, there is one main modify entry point and that entry point takes a
Cubit command string. This allows us to access all the Cubit modify and creation
functionality without having to build additional interfaces.

Python and SWIG are both open source codes with a BSD type license. There are
no restrictions on the use of these tools.

Conclusion

Claro is both a software implementation and an encapsulation of some architec-
tural requirements for software supporting the design through analysis process.
Some of the major requirements that Claro supports are a multi-platform graphical
user interface, high-level visualization tools, and scripting. In the Claro develop-
ment process we have had very good success meeting the requirements by spec-
ifying and using the proper set of tools. The tools that we have used for meeting
these requirements are respectively: Qt, VTK, and Python. By using the proper set
of tools we have been able to leverage the efforts of multiple developers both inside
and outside of the Claro project, increase productivity and meet user needs.

References

[1] http://www.trolltech.com, 2001.

[2] D. Beazley. http://www.swig.org, 2005.

[3] T.L. Cottom. Using SWIG to bind C++ to Python. Computing in Science and
Engineering, 5(2):88–97, 2003.

[4] Abaqus Inc. Abaqus 6.5 User’s Manual. Abaqus Inc., www.abaqus.com,
2005.

[5] Kitware Inc. Vtk 5.0.0 documentation. Technical report, oct 2005.

[6] Sandia National Laboratories. http://cubit.sandia.gov, 2005.

[7] J. Linxweiler. Ein prototyp zur immersiven betrachtung und interaktiven ma-
nipulation rŁumlicher objekte. Master’s thesis, Technische UniversitŁt Braun-
schweig, July 2005.

14

[8] K. Merkley, R. Meyers, C. Stimpson, and C. Ernst. Verde - VERification of
Discrete Elements. In B.K. Soni and J.F. Thompson, editors, 8th Interna-
tional Conference on Numerical Grid Generation in Computational Field Sim-
ulations. International Society of Grid Generation, 2002.

[9] O.Pironneau. http://www.freefem.org/ff3d, 2005.

[10] D. H. Rogers and C. J. Garasi. Prism: A multi-view visualization tool for multi-
physics simulation. In 3rd International Conference on Coordinated and Mul-
tiple Views in Exploratory Visualization. IEEE, July 2005.

[11] William J. Schroder, Kenneth M. Martin, and Lisa S. Avila. VTK User’s Guide,
2003.

[12] G. D. Sjaardema. APREPRO: An algebraic preprocessor for parameterizing
finite element analyses. Technical Report SAND92-2291, Sandia National
Laboratories, Albuqurque, NM, 1992.

[13] M. B. Stephenson T. D. Blacker. Paving: A new approach to automated quadri-
lateral mesh generation. International Journal for Numerical Methods in Engi-
neering, 32:811–847, 1991.

[14] P.F. Dubois T.-Y.B.Yang, G. Furnish. Steering object-oriented scientific com-
putations. In TOOLS 23. Technology of Object-Oriented Languages and Sys-
tems, pages 112–119, July 1997.

[15] S.A. Mitchell T.J. Tautges, T. Blacker. The whisker weaving algorithm:
A connectivity-based method for constructing all-hexahedral finite element
meshes. International Journal for Numerical Methods in Engineering,
39:3327–3349, 1996.

[16] Guido van Rossum. http://www.python.org, 2005.

[17] D.R. White and T.J. Tautges. Automatic scheme selection for toolkit hex mesh-
ing. International Journal for Numerical Methods in Engineering, 49(1):127–
144, September 2000.

15

DISTRIBUTION:

1 Karl G. Merkley
Elemental Technologies, Inc.
17 Merchant Street
American Fork, UT 84003

1 MS 0376
Ted Blacker, 1422

1 MS 0376
Steve Owen, 1422

1 MS 0822
Dave White, 9227

1 MS 0822
Dave White, 9227

2 MS 9018
Central Technical Files, 8945-1

2 MS 0899
Technical Library, 4536

16

